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TCMPBose-Hubbard Model
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TCMPBose-Hubbard Model
Assumptions

•  The thermal and mean interaction energies at a single site are much 
smaller than the energy separation to the first excited band 

•  The Wannier functions decay essentially within a single lattice 
constant 

•  Under these assumptions:  
•  Only the lowest energy band needs to be included in our 

description 
•  The hoping matrix elements are only significant for nearest 

neighbours 
•  The interactions are dominated by the on-site contribution only
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TCMPSuperfluid state (U =0)
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•  The manybody ground state is simply an ideal BEC where all the 
atoms are in the q =0 Bloch state of the lowest band 

!
!
!
•  Hence the groundstate is a Gross-Pitaevskii type state with a 

condensate fraction equal to one 
•  However the critical temperature is significantly reduced (effective 

mass) as compared to the free case
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TCMPMott Insulator Phase (U >>J)
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•   Assume (for the moment) the number of atoms is equal to the 
number of lattice points  

!
!
!
•  With increasing J the atoms start to hop around, which involves 

double occupancy, increasing the energy by U. However, the ground 
state is no longer a simple product state 

•  Once J becomes of order or larger than U the gain in kinetic energy 
outweighs the repulsion due to double occupancy 

•  The atoms then undergo a transition, in the thermodynamic limit, to a 
superfluid state. 
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TCMPBHM (Phase Diagram)
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•  U/J → 0: the KE dominate and the 
ground state is a delocalized 
superfluid 

•  U/J is large: interactions dominate 
and one obtains a series of MI 
phases with fixed integer filling 
(∂n/∂µ = 0) 

•  The transition between the SF and 
MI phases is associated with a loss 
of long-range order



TCMPBHM (Meanfield)
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Meanfield substitution



TCMPBHM (Meanfield Perturbation)

Expansion in ψ (odd powers zero)

HMF = H0 + �V

•  Denote the unperturbed energy of the state with n particles by En(0) 

!
!
!
!
!

•  Second order correction 
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TCMPBHM (Meanfield Critical Points)

Minimize energy as a function of superfluid parameter
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TCMPBHM (Phase Diagram Revisited)
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U c = 5.83, for g = 1

Meanfield

QMC (z=4)
U c = 7.34, for g = 1



TCMPBHM (Numerics)



TCMPBHM (Experiments: BECs)
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where Er is the recoil energy Er = h2/(2m�2)

Translation to experimental parameters



TCMPBHM (Experimental Results)
Changing V

M. Greiner et al., Nature 415, 39 (2002)



TCMPBHM (Experimental Analysis)

n(k) � |w̃(k)|2
�

R

eik·RG(1)(R)

Momentum distribution

•   MI phase: the one particle density matrix decays to zero 
exponentially 

•   SF phase: is characterized by by a momentum distribution which 
exhibits sharp peaks at the reciprocal lattice vectors k =G (G.R 
=2πn) 

•   The peaks in the momentum distribution initially grow because of 
the decrease in the spatial extent of the Wannier function w(r), which 
results in an increase in its Fourier transform at higher momentum 

•   In the MI regime the remnants of the interference peaks remain as 
long as G(1)(R) extends over several lattice spacings



TCMPSupersolids: History
•   Systems in a supersolid phase possess a spontaneously formed crystalline 

structure along with off diagonal long-range order which characterizes 
superfluidity.  

•   The investigation of supersolid phases in condensed matter systems has 
been a focus of research for more than half a century [Phys. Rev. 106, 161 
(1957), Sov. Phys. JETP 29, 1107 (1969), Ann. Phys. 52, 403 (1969), Phys. 
Rev. Lett. 25, 1543 (1970)]  

•.  Until recently this effort has primarily focused on possible realization of a 
supersolid phase in 4He [J. Low. Temp. Phys. 168, 221 (2012)], with the 
most credible claim for observation [Nature 427, 225 (2004), Science 305, 
1941 (2004)] now being withdrawn [Phys. Rev. Lett. 109, 155301 (2012)]

       In 2004, Kim and Chan carried out torsional oscillator measurements of solid helium confined in porous 
Vycor glass and found an abrupt drop in the resonant period below 200 mK. The period drop was 
interpreted as probable experimental evidence of nonclassical rotational inertia. This experiment 
sparked considerable activities in the studies of superfluidity in solid helium. More recent ultrasound 
and torsional oscillator studies, however, found evidence that shear modulus stiffening is responsible for 
at least a fraction of the period drop found in bulk solid helium samples. The experimental configuration 
of Kim and Chan makes it unavoidable to have a small amount of bulk solid inside the torsion cell 
containing the Vycor disk. We report here the results of a new helium in Vycor experiment with a design 
that is completely free from any bulk solid shear modulus stiffening effect. We found no measurable 
period drop that can be attributed to nonclassical rotational inertia.



TCMPCharge density wave
Extended Bose-Hubbard model: nearest neighbour



TCMPSupersolid
Extended Bose-Hubbard model: nearest neighbour



TCMPSingle Atom Cavity
Jaynes-Cummings Model

!
•   A two level atom interacts with a quantized cavity field  
•   The JC Hamiltonian consists of a single-moded quantized 

electromagnetic field, atomic excitation, and atom-field interaction 
terms 

HJC = Hfield + Hatom + Hint



TCMPSingle Atom Cavity
Jaynes-Cummings Model

!
•   The Hamiltonian of the quantized free electromagnetic field for a 

single mode of frequency is  
!
!
•   The Hamiltonian of the atomic excitation is  
!
!

•   The Hamiltonian for the atom-photon interaction is derived from a 
classical description of a two-level transition of the electric dipole 
interaction (dipole approximation) and the rotating wave 
approximation:

HJC = Hfield + Hatom + Hint
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TCMPSingle Atom Cavity
Jaynes-Cummings Model
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TCMPSingle Atom Cavity
Jaynes-Cummings Model
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TCMPSingle Atom Cavity
Jaynes-Cummings Model: 

Photon Blockade



TCMPSingle Atom Cavity

Depictions of micro-cavities which have been coupled to high-dipole 
moment resonant transition systems: (a) cesium atoms in microtoroid 
cavity [1], (b) rubidium atom in Fabry-Perot resonators [2], (c) 
microstrip cavity with charge qubit [3] (d) quantum dots in Fabry-Perot 
resonator [4], (e) quantum dots in photonic bandgap cavity, and (f) 
diamond nitogen-vacancy centre in whispering gallery mode microdisk 
[5].

Experimental Possibilities (I)



TCMPCoupled Atom Cavities
Experimental Possibilities (II)

!
•   A possible realisation of a 1D solid-light systems. Here holes are 

drilled into a thin membrane and lattice defects serve as the optical 
cavities housing two-level atoms.
[1] Observation of strong coupling between one atom and a monolithic microresonator,  
T. Aoki et al., Nature 443, 671 (2006) 

[2] Vacuum-stimulated cooling of single atoms in three dimensions,                                           
S. Nuβmann et al., Nature Physics 1, 122 (2005) 

[3] Superconducting quantum bits,  
J. Clarke and F. Wilhelm, Nature 453, 1031 (2008) 

[4] Strong Coupling in a single quantum dot-semiconductor microcavity system,  
J.P. Reithmaier et al., Nature 432, 197 (2004) 

[5] Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,  
P. Barclay et al., Optics Express 17, 8081 (2009)



TCMPCoupled Atom Cavities
JCH Hamiltonian
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TCMPCoupled Atom Cavities
Finding the Groundstate



TCMPCoupled Atom Cavities
Meanfield Solution



TCMPLong-range interactions in JCH

!
•    To achieve long-range interactions in the coupled atom-cavity system we require the excited 

state of the atom to have a significant dipole moment.  

•    A possible realization of an atomic cavity that exhibits a dipole moment when excited, 
utilizes the Rydberg state of Rb atoms. The 5S1/2 ground state |g⟩ of the Rb atom, that has 
been placed inside the cavity, is resonantly coupled to the Rydberg state |e⟩ via a two photon 
process, by using the 5P3/2 state |i⟩ as an intermediate step. By choosing appropriate 
detunings for the driving fields the intermediate state can be eliminated adiabatically as 
there are only small changes in its population over time.



TCMPLong-range interactions in JCH

!
•    For the cQED, arrays of coupled cavities can be fabricated with either capacitive or inductive 

coupling linking the resonators. This architecture provides an entirely equivalent realization of 
the JCH model. 

•    The figure provides a schematic for two layers of a possible multiple layer circuit. Each layer 
in the circuit consists of a one dimensional array of Josephson junction based two-level 
systems coupled via strip-line resonators and capacitors. The photonic components of the JCH 
model are now microwave excitations in the strip-line resonators and the long-range 
interactions (in this case nearest-neighbour) arise from capacitive coupling between adjacent 
Josephson junction two-level systems.  

•    For a multi-layered system capacitive coupling between strip-line resonators in adjacent layers 
enables microwave excitations to couple between layers. Additionally, capacitive coupling 
between Josephson junctions in adjacent layers mediates a long-range interaction between 
two-level systems. 



TCMPThe Hamiltonian



TCMPMeanfield solutions: CDW



TCMPMeanfield solutions: SS
!
•    The nature of the nearest neighbour interaction 

in the JCH model is qualitatively different to 
that found in other lattice systems with long-
range interactions, such as ultra-cold dipolar 
gases in optical lattices, where the extended 
Bose-Hubbard model is appropriate.  

•    Specifically in the extended JCH model the 
interaction is mediated via a two-level system. 
Thus the interaction depends on the 
simultaneous excitation of neighbouring atoms 
which favours anti-ferromagnetic correlations 
between the atomic states.  

•    Indeed, at κ = 0 the JCH system maps to a 
quantum Heisenberg model, in contrast to the 
Bose Hubbard case, which lies in the classical 
Ising universality class.



TCMPOther Stuff
!
• Anderson localisation 
• Synthetic gauge fields 
• Spin-orbit coupling 
• Fields on lattices (cold gases and CAC) 
• Exotic superfluidity (Dipolar) 
• Quantum metamaterials 
• BKT + lots more …

⇥L = 1, M = 0|1 � 3 cos2 �|L = 1, M = 0⇤ = �4⇥

5
< 0



TCMPSome Other Recent Work: 2010-
NV Centres

Atomtronics

Zone-plate focusing of BECs for atom optics and erasable high speed lithography of quantum electronic 
components, T.E. Judd et al., New Journal of Physics 12, 063033 (2010)

Quantum reflection of ultracold atoms from thin films, graphene and semiconductor heterostructures, 
T.E. Judd et al., New Journal of Physics 13, 083020 (2011): selected as a 2011 highlight

Synthetic magnetohydrodynamics in BECs and routes to vortex nucleation, L.B. Taylor et al., Physical 
Review A 84, 021604(R) (2011)

Measurable quantum geometric phase from a rotating single spin, D. Maclaurin et al., Physical Review 
Letters 108, 240403 (2012)

Coherent tunnellng via adiabatic passage in a three well Bose-Hubbard system, C.J. Bradly et al., Physical 
Review A 85, 053609 (2012)

Nanoscale magnetometry through quantum control of nitrogen-vacancy centres in rotationally diffusing 
nanodiamonds, D. Maclaurin et al., New Journal of Physics 15, 013041 (2013)

Strongly Interacting Cold Gases

Universality in rotating strongly interacting gases, B.C. Mulkerin et al., Physical Review A 85, 053636 (2012)

Interferometry using adiabatic passage in dilute gas Bose-Einstein condensates, M. Rab et al., Physical 
Review A 86, 063605 (2012)

Universality and itinerant ferromagnetism in rotating strongly interacting Fermi gases, B.C. Mulkerin et al., 
Physical Review A 86, 053631 (2012)



TCMPSome Other Recent Work: 2010-

Dipolar BECs

Collective excitation frequencies and stationary states of trapped dipolar BECs in the Thomas Fermi 
regimes, R.M.W. van Bijnen et al., Physical Review A 82, 033612 (2010)

Other BEC stuff

Perturbative behavior of a vortex in a trapped Bose-Einstein condensate, L. Koens and A.M. Martin, 
Physical Review A 86, 013605 (2012)

Vibrations of a columnar vortex in a trapped Bose-Einstein condensate, L. Koens, T.P. Simula and A.M. 
Martin, Physical Review A 87, 063614 (2012)

Anisotropic and long-range vortex interactions in two-dimensional dipolar bose gases, B.C. Mulkerin et al., 
Physical Review Letters 111, 170402 (2013)

Jaynes Cummings Hubbard Model

Reconfigurable quantum metamaterials, J.Q. Quach et al., Optics Express 19, 11018 (2011)

Fractional quantum Hall physics in Jaynes-Cummings-Hubbard lattices, A.L.C. Hayward et al., Physical 
Review Letters 108, 223602 (2012)

Quantum Graphity
Domain structures in quantum graphity, J.Q. Quach et al., Physical Review D 86, 044001 (2012)
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